planéte MARS

Mars (planète)

Un article de Wikipédia, l'encyclopédie libre.

Pour les articles homonymes, voir Mars. Page d'aide sur l'homonymie
Mars : symbole astronomique
Mars 

L’hémisphère Cerberus, le 11 février 1980, par Viking 1.



L’hémisphère Cerberus, le 11 février 1980, par Viking 1. Caractéristiques orbitales
(Époque J2000.0) Demi-grand axe 227 936 637 km
(1,52366231 ua) Aphélie 249 228 730 km
(1,66599116 ua) Périhélie 206 644 545 km
(1,38133346 ua) Circonférence orbitale ~1 430 000 000 km
(9,553 ua) Excentricité 0,09341233 Période de révolution 686,9601 d
(1,8808 a) Période synodique 779,9643 d Vitesse orbitale moyenne 24,077 km/s Vitesse orbitale maximale 26,499 km/s Vitesse orbitale minimale 21,972 km/s Inclinaison 1,85061° Nœud ascendant 49,578° Argument du périhélie 286,46230° Satellites 2 (Phobos et Déimos) Caractéristiques physiques Rayon équatorial 3 402,45 km
(0,533 Terre) Rayon polaire 3 377,4 km
(0,533 Terre) Périmètre équatorial 21 344 km Superficie 1,448×108 km²
(0,284 Terre) Volume 1,638×1011 km³
(0,151 Terre) Masse 6,4185×1023 kg
(0,107 Terre) Masse volumique moyenne 3,934×103 kg/m³ Gravité à la surface 3,69 m/s²
(0,376 g) Vitesse de libération 5,027 km/s Période de rotation
(jour sidéral) 1,025957 d
(24,622962 h) Vitesse de rotation
(à l’équateur) 868,220 km/h Inclinaison de l’axe 25,19° Albédo moyen 0,15 Température de surface
  • Min. : 133 K = -140 °C
  • Moy. : 210 K = -63 °C
  • Max. : 293 K = 20°C
Caractéristiques de l’atmosphère Pression atmosphérique 0,7-0,9×103 Pa Dioxyde de carbone CO2 95,32 % Diazote N2 2,7 % Argon Ar 1,6 % Dioxygène O2 0,13 % Monoxyde de carbone CO 0,07 % Vapeur d’eau H2O 0,03 % Néon Ne 2,5 ppm Krypton Kr 300 ppb Xénon Xe 80 ppb Ozone O3 30 ppb Méthane CH4 10,5 ppb Découverte Découvreur inconnu Date Préhistoire

Mars est la quatrième planète du système solaire en partant du Soleil, et venant juste après Mercure en taille. Elle fait partie des planètes telluriques. Elle est nommée d’après le dieu romain de la guerre Mars, identifié au dieu grec Arès, en raison de son apparence rougeâtre. Pour la même raison, elle est aussi appelée la « planète rouge ».

Plusieurs missions spatiales d’observation puis d’exploration depuis les années 1960 permettent de mieux connaitre les caractéristiques de Mars : sa géographie, son atmosphère, etc.

Mars possède deux satellites naturels : Déimos et Phobos nommés d’après la mythologie grecque dans laquelle Phobos (la peur) et Déimos (la terreur) sont les enfants d’Arès.

Mars peut être observée à l’œil nu. Son éclat est bien plus faible que celui de la Lune ou du Soleil, et ne dépasse que très rarement celui de Vénus ou Jupiter. Cependant, lors des configurations les plus favorables (lors d'oppositions rapprochées), son éclat peut dépasser l'éclat maximum de Jupiter, avec une magnitude apparente maximale de -2,91[1].

La planète rouge a aussi influencé un grand nombre d’auteurs de science fiction. Les principaux aspects de ces fictions ont été inspirés par les observations télescopiques de la fin du XIXe siècle et du début du XXe siècle, antérieures aux visites par des sondes, qui laissaient supposer l’existence de mers et de canaux.

Sommaire

[masquer]

Caractéristiques physiques

Surface de Mars vue par le robot Spirit (NASA). La coloration rougeâtre a été excessivement renforcée pour la presse.

Mars est connue comme la Planète rouge, son aspect rougeâtre étant dû à l’oxyde de fer III (couramment nommé hématite) contenu dans les minéraux de sa surface.

Le relief de Mars est très accentué, on y trouve la plus haute montagne du système solaire (le volcan Olympus Mons ou Mont Olympe), haute d'environ 25 km, et le plus grand canyon (Valles Marineris), ayant une profondeur moyenne de 6 kilomètres[2].

Mars est entourée d’une mince atmosphère principalement constituée de dioxyde de carbone et a disposé également d'une hydrosphère active : de l’eau a coulé sur Mars.

Mars possède deux satellites naturels de petite taille et de forme irrégulière, Phobos et Déimos, lesquels sont probablement des astéroïdes capturés.

Comparaison des planètes telluriques [modifier]

Le diamètre de Mars est environ deux fois plus petit que celui de la Terre et sa superficie représente approximativement celle de nos continents. Sa masse est à peine supérieure au dixième de la masse terrestre. Sa masse volumique est la plus faible des planètes telluriques ce qui lui confère une gravité très légèrement inférieure à celle de Mercure, en dépit d’une masse deux fois plus importante.

L’inclinaison de l'axe de Mars est très proche de celle de la Terre, provoquant une saisonnalité comparable à celle observée sur Terre (voir également le paragraphe consacré au climat). Autre point commun, le jour martien dépasse de seulement 39 minutes le jour terrestre. En revanche, du fait de son éloignement relatif du Soleil 1,5 fois plus important, l'année martienne dépasse de 322 jours l'année terrestre.

 

Planète  ↓ Rayon équatorial  ↓ Masse  ↓ Gravité  ↓ Inclinaison de l’axe  ↓
Mercure[3] 2 439,7 km (0,383 Terre) 3,302×1023 kg (0,055 Terre) 3,701 m/s² (0,377 g) ~0,01°
Vénus[4] 6 051,8 km (0,95 Terre) 4,8685×1024 kg (0,815 Terre) 8,87 m/s² (0,904 g) 177,36°[Note 1]
Terre[5] 6 378,14 km 5,9736×1024 kg 9,780 m/s² (0,99732 g) 23,45°
Mars[1] 3 402,45 km (0,533 Terre) 6,4185×1023 kg (0,107 Terre) 3,69 m/s² (0,376 g) 25,19°
Photomontage comparatif des tailles des planètes telluriques (de gauche à droite) : Mercure, Vénus, la Terre et Mars.

 

Géographie

Icône de détail Article détaillé : Aréographie.

Si l’équateur martien est défini objectivement, il en va tout autrement pour le premier méridien. En 1830, Les astronomes allemands Wilhelm Beer et Johann Heinrich Mädler choisirent arbitrairement une petite zone circulaire, renommée plus tard Sinus Meridiani, comme point de référence. Après la mission Mariner 9 de 1972, la longitude 0° dut être précisée. C'est un petit cratère, Airy-0, situé dans Sinus Meridiani, sur la ligne tracée par Beer et Mädler, qui fut choisi[6].

Depuis 1999, un niveau 0 pour les altitudes a été défini sur Mars grâce aux résultats de l’expérience d’altimétrie laser MOLA embarquée sur la sonde Mars Global Surveyor. Une cartographie complète des altitudes sur Mars a ainsi été réalisée et le niveau 0 a alors pu être fixé à l’altitude moyenne du relief martien située à 3 393 kilomètres du centre de la planète. Avant Mars Global Surveyor, en l’absence de niveau de la mer, le niveau 0 avait été fixé de façon arbitraire : c’était l’altitude ayant une pression atmosphérique moyenne de 611,73 Pascal (pression du point triple de l’eau à 273,16 kelvin). Mais, du fait des grandes variations cycliques de pression sur la planète au cours d’une année martienne (jusqu’à 30 % de pression en moins lors de l'hiver austral par condensation du dioxyde de carbone – constituant 95 % de l’atmosphère – sous forme de glace au pôle Sud), ce système s’est révélé peu fiable pour déterminer les altitudes réelles.

Biblis Patera
Uranius Patera
Ceraunius Tholus
Tharsis Tholus
Gange Chasma
Nili Fossae
Argyre Planitia
Arcadia Planitia
Terra Sirenum
Solis Planum
Tempe Terra
Aonia Terra
Terra Meridiani
Utopia Planitia
Acidalia Planitia
Syrtis Major
Tyrrhena Terra
Hesperia Planum
Elysium Planitia
Promethei Terra
Terra Cimmeria
Carte topographique des altitudes martiennes basée sur les données de Mars Global Surveyor.

Il existe d’importantes différences entre les deux hémisphères : les immenses plaines lissées par des coulées de lave au nord contrastent avec les reliefs plus accidentés et constellés de cratères d'impact au sud. La présence de tels cratères en si grand nombre est la signature de terrains anciens, n’ayant pas ou peu évolué depuis la fin du bombardement météorique originel survenu il y a 3,8 milliards d’années. Autre différence notable, les plaines du nord se situent pour l'essentiel en dessous du niveau de référence alors que les plateaux du sud le dépassent de quelques kilomètres. Au nord, seuls le dôme de Tharsis et Elysium Planitia qui supportent les principaux édifices volcaniques de Mars font exception à la règle. Au sud, c’est du côté d'Hellas Planitia et d'Argyre Planitia, deux importants cratères d'impact, et du canyon Valles Marineris, que l’on trouve des altitudes inférieures au niveau de référence. En moyenne, l’hémisphère sud est 6 kilomètres plus haut que l’hémisphère nord. Malgré cela, c’est dans les régions australes que l’on trouve le point le plus bas de Mars, au fond du cratère Hellas, à 9 kilomètres en dessous du niveau moyen. Inversement, le point le plus élevé, le sommet d’Olympus Mons, culmine à 25 kilomètres d’altitude et se situe dans l’hémisphère nord. Enfin, vue de la Terre, la surface de Mars se divise en deux zones possédant des albédos différents. Les plaines claires et rougeoyantes du nord, couvertes de poussière riche en oxydes de fer, furent initialement assimilées à des continents et portent des noms comme Arabia Terra ou Amazonis Planitia. Les zones sombres et brunes des hauts plateaux du sud furent à l'inverse considérées comme des mers (Mare Erythraeum, Mare Sirenum ou Aurorae Sinus).

Selon la revue Nature, cette dissymétrie s’expliquerait par l’impact d’un planétoïde (une ancienne planète naine) de 1 600 à 2 700 kilomètres de diamètre il y a plus de 4 milliards d'années[7]. Le choc aurait fait fondre instantanément une partie de la croûte et du manteau martien sur une surface décrivant une ellipse quasi parfaite de 10 500 kilomètres sur 8 500 kilomètres. Une nouvelle croûte plus fine et de composition différente se serait alors formée en refroidissant sur des millions d'années.

Grâce aux nombreuses missions d’exploration, la carte de Mars est désormais bien connue. Elle est caractérisée par des reliefs imposants qui témoignent d’une activité volcanique et hydrologique réelle, mais très ancienne comme nous le rappellent les nombreux cratères d'impact toujours visibles à la surface de Mars.

Géologie 

Icône de détail Article détaillé : Aréologie.

Magnétosphère

Magnétisation de la croûte martienne. Cette carte a été obtenue grâce aux mesures faites par Mars Global Surveyor. L'unité utilisée est le nanoTesla.

Mars ne possède aucun champ magnétique global. Le magnétomètre MAG/ER de Mars Global Surveyor a cependant révélé des particularités magnétiques locales, en particulier, au-dessus des terrains les plus anciens. Ces anomalies peuvent être le témoignage d’une ancienne activité du noyau et d’une activité tectonique.

Lorsqu’il est global, le champ magnétique est supposé prendre naissance au cœur de la planète par la convection des métaux liquides composant la partie externe de son noyau (effet dynamo). Le magnétisme rémanent observé aujourd’hui sur Mars est créé par des roches magmatiques riches en magnétite qui ont pu capturer le champ magnétique qui prévalait sur la planète au moment de leur formation. La date de disparition de la dynamo martienne est encore discutée. Mais pour la plupart des scientifiques, l'absence de magnétisme au dessus des deux plus grands cratères d'impact, Argyre et Hellas, laissent supposer que cette disparition est survenue il y a plus de 4 milliards d'années[8].

Autre fait remarquable, l’alternance des bandes correspond à des inversions de polarité du champ magnétique fossile. Cette structure en « peau de zèbre » est également observée sur Terre, en particulier sur le plancher des océans, de part et d'autre des dorsales. Lorsque deux plaques s'éloignent l'une de l'autre, du magma remonte à la surface. En se cristallisant, il enregistre la polarité du champ magnétique. La présence d'anomalies magnétiques disposées en bandes, alternativement positives et négatives, parallèles et symétriques à l'axe formé par la dorsale médio-océanique montre que le champ magnétique s'est inversé à plusieurs reprises au cours de son histoire et qu'il existe une dérive des continents, autrement dit, une tectonique des plaques. Sur Mars, cette structure en « peau de zèbre » implique également des inversions du champ magnétique global, mais elle ne semble pas être suffisamment symétrique pour que l'on puisse conclure de manière irréfutable à une tectonique des plaques[9].

À noter également que des aurores peuvent se produire au dessus des anomalies magnétiques de la croûte martienne. Selon toute vraisemblance, elles ne peuvent pas être perçues par l’œil humain, car elles se produisent principalement dans l’ultraviolet[10].

Volcanisme

Olympus Mons : 25 kilomètres de haut, 550 kilomètres de diamètre. Sa caldeira fait 85 kilomètres de large et 3 kilomètres de profondeur. C'est le plus haut volcan du système solaire.

Mars a connu une activité volcanique intense dans son passé. Les volcans, peu nombreux mais gigantesques, sont répartis dans deux régions : le dôme de Tharsis à l'ouest et Elysium Planitia à l'est.

  • Le dôme de Tharsis est une vaste région de 5 500 kilomètres de diamètre qui soutient les principaux édifices volcaniques de Mars. Au nord, on trouve Alba Patera, dont la base fait 1 600 kilomètres de diamètre mais dont le point culminant ne dépasse pas les 6 kilomètres d'altitude. Le sud et l'est de cette région sont délimités par Tharsis Montes. Il s'agit d'un alignement de trois énormes volcans boucliers : Arsia Mons (17 kilomètres de haut) au sud, Pavonis Mons (14 kilomètres de haut) à l'équateur et Ascraeus Mons (18 kilomètres de haut) au nord. Enfin, dans la région ouest du dôme de Tharsis, on trouve Olympus Mons. Culminant à une hauteur de 25 kilomètres et reposant sur une base de 550 kilomètres de diamètre, il s'agit du plus haut volcan connu du système solaire.
  • Elysium Planitia est la seconde région volcanique importante de Mars après le dôme de Tharsis. Bien plus petite que cette dernière (1 700 kilomètres sur 2 400 kilomètres), elle supporte essentiellement Elysium Mons, haut de 10 kilomètres pour un diamètre de 170 kilomètres, bordé au nord par Hecates Tholus et au sud par Albor Tholus.

Compte tenu de sa masse et de son rayon, Mars s'est refroidi beaucoup plus vite que la Terre, ce qui laisse penser que ces volcans sont aujourd’hui inactifs. Toutefois, des écoulements de lave datés de 2 millions d’années (donc récents à l’échelle des temps géologiques) ont été observés avec la caméra haute résolution HRSC de la sonde Mars Express[11].

L'activité volcanique sur Mars n'a pas été aussi constante que sur Terre et a connu 5 épisodes majeurs :

  • Le plus ancien serait survenu il y a 3,5 milliards d'années, suivi d'un deuxième il y a 1,5 milliards d'années et d'un troisième il y a 400-800 millio

2 votes. Moyenne 5.00 sur 5.

Ajouter un commentaire

Vous utilisez un logiciel de type AdBlock, qui bloque le service de captchas publicitaires utilisé sur ce site. Pour pouvoir envoyer votre message, désactivez Adblock.

Créer un site gratuit avec e-monsite - Signaler un contenu illicite sur ce site

×